Các ứng dụng plasma Electron

Chùm hạt

Trong thử nghiệm ở một buồng gió của NASA, một mô hình thu nhỏ của tàu con thoi được chiếu bằng một chùm các electron, nhằm mô phỏng hiệu ứng khí ion hóa trong quá trình trở lại bầu khí quyển của con tàu.[154]

Trong công nghệ và kỹ thuật, các chùm tia electron đã được ứng dụng để thực hiện hàn bằng chùm electron giữa hai loại vật liệu.[155] Chúng cho phép mật độ năng lượng của chùm tia hàn lên tới &0000000010000000.000000107 W·cm−2 được tập trung trong một hình nón tròn đường kính cỡ 0.1–1.3 mm mà thường không cần đòi hỏi phải có lớp vật liệu đệm thứ 3. Kỹ thuật hàn này phải được thực hiện trong chân không để tránh các electron va chạm với một trường khí xung quanh trước khi chúng đến được vật liệu cần hàn, và nó có thể được sử dụng để nối các loại vật liệu dẫn điện mà những biện pháp hàn khác không phù hợp để áp dụng.[156][157]

Quang khắc chùm điện tử (EBL) là phương pháp tạo các chi tiết bán dẫn ở mức phân giải nhỏ hơn 1 µm.[158] Kỹ thuật này có hạn chế là giá thành cao, tốc độ sản xuất chậm, cần phải vận hành chùm điện tử trong môi trường chân không cao và các electron có xu hướng tán xạ trên bề mặt vật liệu. Độ phân giải tối đa của phương pháp này vào khoảng 10 nm. Vì lý do này, EBL được ứng dụng chủ yếu cho sản xuất một số nhỏ các vi mạch chuyên biệt.[159]

Phương pháp xử lý chùm điện tử (electron-beam processing, hoặc electron irradiation EBI) được ứng dụng để làm thay đổi các đặc tính của vật liệu hoặc khử trùng trong y học và thực phẩm bằng cách chiếu chùm điện tử vào sản phẩm.[160] Chùm electron hóa lỏng hoặc làm tan chảy thủy tinh mà không gây tăng nhiều nhiệt độ khi thực hiện chiếu với cường độ cao: ví dụ bức xạ electron mạnh gây ra sự giảm độ nhớt ở nhiều bậc độ lớn và làm giảm từng bước năng lượng hoạt hóa của nó.[161]

Các máy gia tốc quỹ đạo thẳng (linear particle accelerator) tạo ra những chùm electron cho chùm sáng dùng để điều trị các khối u trên bề mặt trong trị liệu bức xạ. Trị liệu điện tử (electron therapy) có thể điều trị các thương tổn ở da như ung thư tế bào đáy bởi vì một chùm electron chỉ có thể thâm nhập xuống một độ sâu nhất định trước khi bị hấp thụ, thường là đến 5 cm đối với electron có năng lượng trong phạm vi 5–20 MeV. Một chùm electron có thể được sử dụng phối hợp với chiếu xạ tia X trong điều trị bệnh.[162][163]

Các máy gia tốc hạt sử dụng điện trường để đẩy các electron và phản hạt của chúng lên mức năng lượng cao. Những hạt này phát ra bức xạ đồng bộ (synchrotron radiation) khi chúng bay qua từ trường. Cường độ của bức xạ đồng bộ phụ thuộc vào phân cực spin của chùm electron—quá trình được gọi là hiệu ứng Sokolov–Ternov.[note 8] Các chùm electron phân cực được ứng dụng trong nhiều thí nghiệm khác nhau. Bức xạ synchrotron có thể dùng làm mát chùm electron với mục đích làm giảm sự phân tán động lượng của chùm hạt. Các chùm electron và positron được cho va chạm với nhau trong máy gia tốc khi chúng đạt đến mức năng lượng yêu cầu; các máy dò hạt (particle detector) quan sát năng lượng của bức xạ phát ra, ghi lại những thông tin và tính chất cần nghiên cứu trong vật lý hạt.[164]

Chụp ảnh

Nhiễu xạ electron năng lượng thấp (Low-energy electron diffraction, LEED) là một phương pháp bắn vào vật liệu có cấu trúc tinh thể bằng một chùm electron chuẩn trực sau đó quan sát hình ảnh nhiễu xạ giúp xác định lên cấu trúc của vật liệu. Năng lượng đòi hỏi của các electron ở những chùm này trong khoảng 20–200 eV.[165] Kỹ thuật phản xạ nhiễu xạ electron năng lượng cao (reflection high-energy electron diffraction, RHEED) sử dụng sự phản xạ của một chùm electron bắn đến với nhiều góc hẹp khác nhau để nghiên cứu đặc trưng bề mặt của vật liệu có cấu trúc tinh thể. Chùm năng lượng thường nằm trong khoảng 8–20 keV và góc bắn electron thường bằng 1–4°.[166][167]

Kính hiển vi điển tử hoạt động dựa trên nguyên lý tập trung chùm electron vào một mẫu vật. Một số electron sau khi va chạm vào mẫu vật thì bị thay đổi đặc tính, như hướng chuyển động, góc phản xạ và pha tương đối cũng như năng lượng bị giảm đi. Các nhà hiển vi học ghi lại những thay đổi này từ chùm electron để tái tạo ra những bức ảnh về mẫu vật.[168] Trong ánh sáng xanh lam, các kín hiển vi quang học thông thường có giới hạn nhiễu xạ phân giải ở kích thước 200 nm.[169] So sánh với kính hiển vi điện tử, loại này bị giới hạn bởi bước sóng de Broglie của electron. Ví dụ, bước sóng này bằng 0,0037 nm đối với những electron được gia tốc trong điện trường cỡ 100.000-volt.[170] Kính hiển vi truyền điện tử hiệu chỉnh quang sai (Transmission Electron Aberration-Corrected Microscope) có độ phân giải dưới 0,05 nm, đủ để phân biệt được từng nguyên tử.[171] Khả năng này mang lại những lợi thế cho sử dụng kính hiển vi điện tử trong phòng thí nghiệm để chụp các bức ảnh có độ phân giải cao. Tuy nhiên, kính hiển vi điện tử là những thiết bị đắt tiền và tốn nhiều chi phí hoạt động và bảo trì.

Có hai loại kính hiển vi điện tử: Loại truyền qualoại quét bề mặt. Kính hiển vi điện tử truyền qua hoạt động giống như một máy chiếu, với một chùm electron được cho chiếu qua một lát vật liệu sau đó nó được hội tụ trên phim âm bản hoặc cảm biến CCD. Kính hiển vi điện tử quét bề mặt dùng chùm electron quét lên bề mặt mẫu vật, giống như hiển thị trên ti vi màn hình ống, để thu được bức ảnh về nó. Độ phóng đại của hai loại kính này vào cỡ 100× đến 1.000.000. Kính hiển vi quét xuyên hầm sử dụng hiệu ứng chui hầm lượng tử của electron từ mũi nhọn của một đầu dò kim loại để nghiên cứu vật liệu và tạo ra bức ảnh bề mặt vật liệu có độ phân giải cao.[172][173][174]

Các ứng dụng khác

Trong laser electron tự do (FEL), một chùm electron tương đối tính đi qua dãy các nam châm lưỡng cực (undulator) bị đổi hướng luân phiên do hướng của từ trường tạo bởi dãy các nam châm này. Vì đổi hướng luân phiên như vậy nên các electron phát ra bức xạ synchrotron một cách nhịp nhàng và đều đặn, bức xạ được khuếch đại ở tần số cộng hưởng. FEL có thể phát ra bức xạ điện từ với độ rọi cao trong dải tần số rộng, từ sóng vi ba cho đến tia X mềm. Những thiết bị này được sử dụng trong sản xuất, viễn thông, và trong các ứng dụng y tế, như phẫu thuật các mô mềm.[175]

Ống tia âm cực chứa electron, mà đã từng được sử dụng thường xuyên cho các màn hình hiển thị tại nhiều thiết bị thí nghiệm, màn hình máy tínhmáy truyền hình.[176] Trong một ống nhân quang điện (photomultiplier tube), mỗi photon va chạm đến âm cực quang khởi tạo ra một luồng các electron và bộ dò phát hiện được như là một xung dòng điện.[177] Ống điện tử chân không sử dụng luồng các electron để thao tác lên tín hiệu điện, và chúng đóng vai trò quan trọng trong sự phát triển của công nghệ điện tử. Tuy nhiên, ngày nay chúng đã bị thay thế bởi các thiết bị bán dẫn như transistor.[178]

Tài liệu tham khảo

WikiPedia: Electron http://physics.web.cern.ch/Physics/ParticleDetecto... http://public.web.cern.ch/PUBLIC/en/Research/LEPEx... http://www.britannica.com/EBchecked/topic/183374 http://cerncourier.com/cws/article/cern/28335 http://www.oed.com/view/Entry/60302?rskey=owKYbt&r... http://www.sciam.com/article.cfm?id=are-virtual-pa... http://www.scientificamerican.com/article.cfm?id=h... http://www.sixtysymbols.com/videos/electron_sphere... http://www.universetoday.com/73323/what-is-an-elec... http://scienceworld.wolfram.com/biography/Franklin...